Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2043900

RESUMEN

Perylene-based compounds are attracting significant attention due to their high broad-spectrum antiviral activity against enveloped viruses. Despite unambiguous results of in vitro studies and high selectivity index, the poor water solubility of these compounds prevented in vivo evaluation of their antiviral properties. In this work, we synthesized a series of compounds with a perylene pharmacophore bearing positively charged substituents to improve the aqueous solubility of this unique type of antivirals. Three types of charged groups were introduced: (1) quaternary morpholinium salts (3a-b); (2) a 2'-O-l-valinyl-uridine hydrochloride residue (8), and (3) a 3-methylbenzothiazolium cation (10). The synthesized compounds were evaluated based both on antiviral properties in vitro (CHIKV, SARS-CoV-2, and IAV) and on solubility in aqueous media. Compound 10 has the greatest aqueous solubility, making it preferable for pre-evaluation by intragastrical administration in a mouse model of lethal influenza pneumonia. The results indicate that the introduction of a positively charged group is a viable strategy for the design of drug candidates with a perylene scaffold for in vivo studies.

2.
Int J Infect Dis ; 116: 331-338, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1587610

RESUMEN

OBJECTIVES: This study aimed to estimate the impact of the COVID-19 pandemic on the circulation of non-SARS-CoV-2 respiratory viruses and the clinical characteristics of COVID-19 in hospitalized children. METHODS: A total of 226 and 864 children admitted to the Children's City Clinical Hospital with acute respiratory infection in September to November of 2018 and 2020 in Moscow were tested for respiratory viruses using multiplex polymerase chain reaction (PCR) and Mycoplasma pneumoniae/Chlamydia pneumoniae using enzyme-linked immunosorbent assay. RESULTS: The detection rate of non-SARS-CoV-2 viruses in 2020 was lower than in 2018, 16.9% versus 37.6%. An increase in the median age of children with respiratory viruses was observed during the pandemic (3 years vs 1 year). There was no significant difference in the frequency of intensive care unit (ICU) admission in children with SARS-CoV-2 and other respiratory virus infections (2.7% vs 2.9%). SARS-CoV-2 and human rhinoviruses, human metapneumoviruses, and human adenoviruses showed significantly lower than expected co-detection rates during co-circulation. An increase in body mass index (BMI) or bacterial coinfection leads to an increased risk of ICU admission and a longer duration of COVID-19 in children. CONCLUSIONS: The COVID-19 pandemic led to significant changes in the epidemiological characteristics of non-SARS-CoV-2 respiratory viruses during the autumn peak of the 2020 pandemic, compared with the same period in 2018.


Asunto(s)
Adenovirus Humanos , COVID-19 , Coinfección , COVID-19/epidemiología , Niño , Preescolar , Humanos , Moscú/epidemiología , Pandemias , SARS-CoV-2
3.
Microscopy Research and Technique ; n/a(n/a), 2021.
Artículo en Inglés | Wiley | ID: covidwho-1410334

RESUMEN

Abstract The severe COVID-19 pandemic drives the research toward the SARS-CoV-2 virion structure and the possible therapies against it. Here, we characterized the ?-propiolactone inactivated SARS-CoV-2 virions using transmission electron microscopy (TEM) and atomic force microscopy (AFM). We compared the SARS-CoV-2 samples purified by two consecutive chromatographic procedures (size exclusion chromatography [SEC], followed by ion-exchange chromatography [IEC]) with samples purified by ultracentrifugation. The samples prepared using SEC and IEC retained more spikes on the surface than the ones prepared using ultracentrifugation, as confirmed by TEM and AFM. TEM showed that the spike (S) proteins were in the pre-fusion conformation. Notably, the S proteins could be recognized by specific monoclonal antibodies. Analytical TEM showed that the inactivated virions retained nucleic acid. Altogether, we demonstrated that the inactivated SARS-CoV-2 virions retain the structural features of native viruses and provide a prospective vaccine candidate.

4.
Molecules ; 26(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1383891

RESUMEN

This paper reports the synthesis of branched alkylene guanidines using microfluidic technologies. We describe the preparation of guanidine derivatives at lower temperatures, and with significantly less time than that required in the previously applicable method. Furthermore, the use of microfluidics allows the attainment of high-purity products with a low residual monomer content, which can expand the range of applications of this class of compounds. For all the samples obtained, the molecular-weight characteristics are calculated, based on which the optimal condensation conditions are established. Additionally, in this work, the antiviral activity of the alkylene guanidine salt against the SARS-CoV-2 virus is confirmed.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Guanidinas/síntesis química , Guanidinas/farmacología , Microfluídica/métodos , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19 , Espectroscopía de Resonancia Magnética con Carbono-13 , Chlorocebus aethiops , Concentración 50 Inhibidora , Espectrometría de Masa por Ionización de Electrospray , Células Vero
5.
Emerg Microbes Infect ; 10(1): 1790-1806, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1370760

RESUMEN

The unprecedented in recent history global COVID-19 pandemic urged the implementation of all existing vaccine platforms to ensure the availability of the vaccines against COVID-19 to every country in the world. Despite the multitude of high-quality papers describing clinical trials of different vaccine products, basic detailed data on general toxicity, reproductive toxicity, immunogenicity, protective efficacy and durability of immune response in animal models are scarce. Here, we developed a ß-propiolactone-inactivated whole virion vaccine CoviVac and assessed its safety, protective efficacy, immunogenicity and stability of the immune response in rodents and non-human primates. The vaccine showed no signs of acute/chronic, reproductive, embryo- and fetotoxicity, or teratogenic effects, as well as no allergenic properties in studied animal species. The vaccine induced stable and robust humoral immune response both in form of specific anti-SARS-CoV-2 IgG and NAbs in mice, Syrian hamsters, and common marmosets. The NAb levels did not decrease significantly over the course of one year. The course of two immunizations protected Syrian hamsters from severe pneumonia upon intranasal challenge with the live virus. Robustness of the vaccine manufacturing process was demonstrated as well. These data encouraged further evaluation of CoviVac in clinical trials.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Humoral , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Callithrix , Cricetinae , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Cobayas , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G/inmunología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Wistar , SARS-CoV-2/genética , Factores de Tiempo , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos
6.
Eur J Med Chem ; 220: 113467, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1184952

RESUMEN

Emerging and re-emerging viruses periodically cause outbreaks and epidemics all over the world, eventually leading to global events such as the current pandemic of the novel SARS-CoV-2 coronavirus infection COVID-19. Therefore, an urgent need for novel antivirals is crystal clear. Here we present the synthesis and evaluation of an antiviral activity of phenoxazine-based nucleoside analogs divided into three groups: (1) 8-alkoxy-substituted, (2) acyclic, and (3) carbocyclic. The antiviral activity was assessed against a structurally and phylogenetically diverse panel of RNA and DNA viruses from 25 species. Four compounds (11a-c, 12c) inhibited 4 DNA/RNA viruses with EC50 ≤ 20 µM. Toxicity of the compounds for the cell lines used for virus cultivation was negligible in most cases. In addition, previously reported and newly synthesized phenoxazine derivatives were evaluated against SARS-CoV-2, and some of them showed promising inhibition of reproduction with EC50 values in low micromolar range, although accompanied by commensurate cytotoxicity.


Asunto(s)
Antivirales/farmacología , Virus ADN/efectos de los fármacos , Nucleósidos/farmacología , Oxazinas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/toxicidad , Línea Celular Tumoral , Chlorocebus aethiops , Perros , Humanos , Células de Riñón Canino Madin Darby , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/toxicidad , Oxazinas/síntesis química , Oxazinas/toxicidad , Relación Estructura-Actividad , Células Vero , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA